# **Human ACTL6A Knockdown Cell Line (WB-Validated)**



## **Catalog #: C1174**

#### **Aliases**

ACTL6A; Actin Like 6A; BAF53A; INO80K; BRG1-Associated Factor 53A; INO80 Complex Subunit K; SMARCN1; 53 KDa BRG1-Associated Factor A; Actin-Related Protein Baf53a; BAF Complex 53 KDa Subunit; Actin-Related Protein; Actin-Like Protein 6A; ArpNbeta; ACTL6; BAF53; Arp4; HArpN Beta; ARPN-BETA; Baf53a; Actl6; ARP4

## **Background**

Gene Name: ACTL6A NCBI Gene Entry: 86

## **Storage**

Store at liquid nitrogen for 1 year.

## **Kit Components**

- 1. Human ACTL6A Knockdown Cell Line (Wb-Validated)
- 2. Wild-type cell line

#### **Parental Cell Line**

Human cell line supplied by the client

### **Validation Methods**

RT-qPCR, Western blotting (WB)

## **Shipping**

Shipped on Dry Ice.

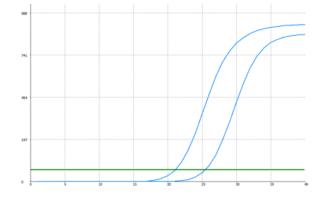
### **Instructions For Use**

This knockdown cell line should be paired with wild-type cell line for use.

## **Manufacturing Process**

The following protocol was used to generate mRNA knockdown cells:

1.Release 0.5 million cells into a 35 mm tissue culture dish in 2 mL of the growth medium (DMEM containing 10% FBS and 1% pen/strep). Cell density should reach 50-60% confluence the following day.

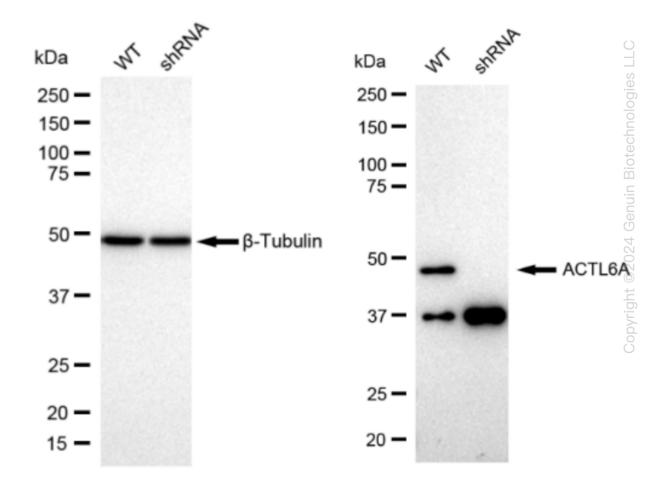

2.24 h after cell release, pre-warm the shRNA lentiviral medium to 37°C.

## **Human ACTL6A Knockdown Cell Line (WB-Validated)**

- 3.Discard 1 mL of the original growth medium of the 35 mm dish.
- 4. Using a serological pipette, gently mix the lentiviral solution 3 times.
- 5.Carefully add 1 mL of the lentiviral solution to the well. Tip: To prevent splashing, add the solution to the dish along the wall.
- 6.Add a polybrene stock solution to the culture medium at a final concentration of 5  $\mu g/mL$ . Gently swirl the dish to mix.
- 7.48 h after cell release, without discarding the original medium, add another 1 mL of lentiviral medium directly into the dish.
- 8.Add an additional polybrene stock solution into the dish to obtain a final concentration of 5  $\mu$ g/mL. Tip: Now, the medium in the dish should be a total of 3 mL.
- 9.72 h after cell release, cells may reach confluence. Trypsinize the cells off the 35 mm dish and culture those cells in a 60 mm dish.
- 10.Add puromycin to the dish at a final concentration of 4  $\mu$ g/mL. Tip: To assess the efficacy of puromycin selection, culture a dish of wild-type cells as a negative control.
- 11.Allow puromycin selection for 48 h. Almost all wild-type cells should die, while the dish infected with lentiviruses should have some remaining cells.
- 854.Replace the medium with regular growth medium without puromycin and allow the cells to grow to confluence before harvesting or staining.

**Note:** This product is for research use only.

#### Validation Data




| Genotype                                  | Ct Value       |
|-------------------------------------------|----------------|
| Wild-Type                                 | 21.92          |
| Knock-Down                                | 24.93          |
| ΔCt (Ct <sub>KD</sub> -Ct <sub>WT</sub> ) | 3.01           |
| % mRNA Reduction                          | <b>♣ 88%</b> # |

RT-qPCR analysis. HeLa cells were infected with ACTL6A-specific shRNA lentiviral particles, total RNA was extracted from wild-type and knockdown cells, RT-qPCR was performed using gene-specific primers.  $\Delta$ Ct (CtKD-CtWT) was used to calculate mRNA reduction (%) between wild-type and knockdown cells using the following formula:  $(1-1/2\Delta$ Ct) x 100%.

TEL: +1-540-855-7041

# **Human ACTL6A Knockdown Cell Line (WB-Validated)**



Western blotting analysis. ACTL6A protein expression in wild-type (WT) and shRNA knockdown (KD) HeLa cells was detected using Western blotting.  $\beta$ -Tubulin served as a loading control. The blots were incubated with primary antibodies (Cat#69174, 1:5,000) against ACTL6A and  $\beta$ -Tubulin, respectively, followed by incubating with HRP-conjugated goat anti-rabbit secondary antibody (Cat#201, 1:20,000). Images were developed using FeQ<sup>TM</sup> ECL Substrate Kit (Cat#226).