Human CDC40 Knockdown Cell Line (WB-Validated)

Catalog #: C61387

Aliases

CDC40; Cell Division Cycle 40; PRPF17; PRP17; EHB3; Cell Division Cycle 40 Homolog; Pre-MRNA-Processing Factor 17; EH-Binding Protein 3; PRP17 Homolog; FLJ10564; HPRP17; Cell Division Cycle 40 Homolog (S. Cerevisiae); Cell Division Cycle 40 Homolog (Yeast); Pre-MRNA Splicing Factor 17; PCH15; Ehb3

Background

Gene Name: CDC40 NCBI Gene Entry: 51362

Storage

Store at liquid nitrogen for 1 year.

Kit Components

- 1. Human CDC40 Knockdown Cell Line (Wb-Validated)
- 2. Wild-type cell line

Parental Cell Line

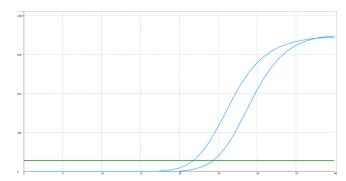
Human cell line supplied by the client

Validation Methods

RT-qPCR, Western blotting (WB)

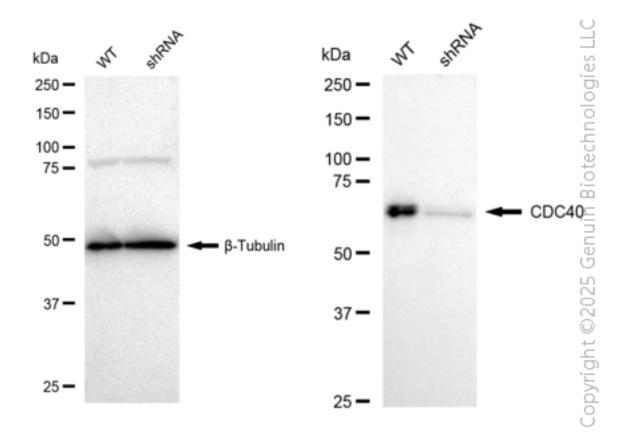
Shipping

Shipped on Dry Ice.


Instructions For Use

This knockdown cell line should be paired with wild-type cell line for use.

Note: This product is for research use only.


Validation Data

Human CDC40 Knockdown Cell Line (WB-Validated)

Genotype	Ct Value
Wild-Type	30.40
Knock-Down	31.85 state of the
ΔCt (CtKD-CtWT)	1.45 co
% mRNA	COOX
Reduction	63% [§]

RT-qPCR analysis. HeLa cells were infected with CDC40-specific shRNA lentiviral particles, total RNA was extracted from wild-type and knockdown cells, RT-qPCR was performed using gene-specific primers. Δ Ct (CtKD-CtWT) was used to calculate mRNA reduction (%) between wild-type and knockdown cells using the following formula: $(1-1/2\Delta$ Ct) x 100%.

Western blotting analysis. CDC40 protein expression in wild-type (WT) and shRNA knockdown (KD) HeLa cells was detected using Western blotting. β-Tubulin served as a loading control. The blots were incubated with primary antibodies against CDC40 and β-Tubulin, respectively, followed by incubating with HRP-conjugated goat anti-rabbit secondary antibody. Images were developed using FeQTM ECL Substrate Kit.