Human NLK Knockdown Cell Line (WB-Validated)

Catalog #: C62384

Aliases

NLK; Nemo Like Kinase; Serine/Threonine-Protein Kinase NLK; Nemo-Like Kinase; EC 2.7.11.24; Protein LAK1; EC 2.7.11; LAK1

Background

Gene Name: NLK

NCBI Gene Entry: 51701

Storage

Store at liquid nitrogen for 1 year.

Kit Components

- 1. Human NLK Knockdown Cell Line (Wb-Validated)
- 2. Wild-type cell line

Parental Cell Line

Human cell line supplied by the client

Validation Methods

RT-qPCR, Western blotting (WB)

Shipping

Shipped on Dry Ice.

Instructions For Use

This knockdown cell line should be paired with wild-type cell line for use.

Note: This product is for research use only.

Validation Data

Human NLK Knockdown Cell Line (WB-Validated)

Genotype	Ct Value ্র
Wild-Type	20.89
Knock-Down	21.98
ΔCt (Ct _{KD} -Ct _{WT})	1.09
% mRNA Reduction	↓ 53%

RT-qPCR analysis. HT-1080 cells were infected with NLK-specific shRNA lentiviral particles, total RNA was extracted from wild-type and knockdown cells, RT-qPCR was performed using gene-specific primers. Δ Ct (CtKD-CtWT) was used to calculate mRNA reduction (%) between wild-type and knockdown cells using the following formula: $(1-1/2\Delta$ Ct) x 100%.

Western blotting analysis. NLK protein expression in wild-type (WT) and shRNA knockdown (KD) HT-1080 cells was detected using Western blotting. Hsp90 α served as a loading control. The blots were incubated with primary antibodies against NLK and Hsp90 α , respectively, followed by incubating with HRP-conjugated goat anti-rabbit secondary antibody. Images were developed using FeQTM ECL Substrate Kit.