WB-Validated GLI3 Knockdown Cell Lysate Kit

Catalog #: L61185

Aliases

GLI Family Zinc Finger 3; PAP-A; PAPA1; PPDIV; PAPA; PAPB; ACLS; Glioma-Associated Oncogene Family Zinc Finger 3; GLI-Kruppel Family Member GLI3; Transcriptional Activator GLI3; Zinc Finger Protein GLI3; Oncogene GLI3; GLI3-190; GLI3FL; GCPS; PHS; Greig Cephalopolysyndactyly Syndrome; GLI3 Full-Length Protein; GLI3 Form Of 190 KDa; DNA-Binding Protein

Background

Gene Name: GLI3 NCBI Gene Entry: 2737

Storage

Stored at -20°C for 2 years.

Kit Components

1. 100 µg WT cell lysate

2. 100 µg KD cell lysate

Tested Cell Line

HT-1080

Validation Methods

RT-qPCR; Western Blotting (WB)

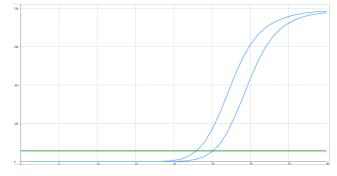
Shipping

Shipped with gel ice packs. Immediately store the product in a standard freezer at -20°C upon receipt.

Instructions For Use

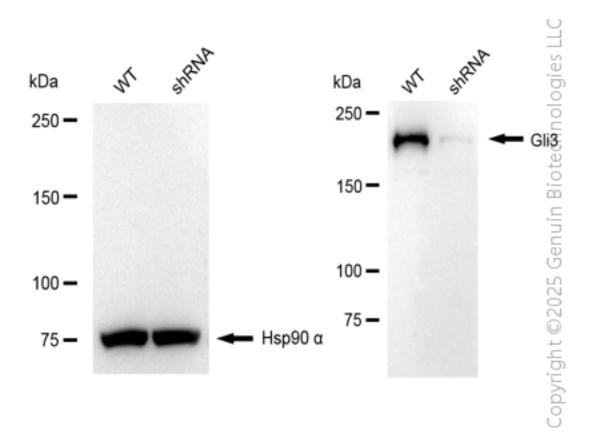
This knockdown cell lysate should be paired with wild-type HT-1080 cell lysate for use. For Western blotting, we recommend running wild-type and knockdown lysates on the same gel, and loading each well with equal volume and equal amount of total proteins.

Manufacturing Process


The following protocol was used to generate mRNA knockdown cell lysate:

- 1.Release 0.5 million HT-1080 cells into a 35 mm tissue culture dish in 2 mL of the growth medium (DMEM containing 10% FBS and 1% pen/strep). Cell density should reach 50-60% confluence the following day.
- 2.24 h after cell release, pre-warm the shRNA lentiviral medium to 37°C.
- 3.Discard 1 mL of the original growth medium of the 35 mm dish.
- 4. Using a serological pipette, gently mix the lentiviral solution 3 times.
- 5.Carefully add 1 mL of the lentiviral solution to the well. Tip: To prevent splashing, add the solution to the dish along the wall.
- 6.Add a polybrene stock solution to the culture medium at a final concentration of 5 $\mu g/mL$. Gently swirl the dish to mix.
- 7.48 h after cell release, without discarding the original medium, add another 1 mL of lentiviral medium directly into the dish.
- 8.Add an additional polybrene stock solution into the dish to obtain a final concentration of 5 μ g/mL. Tip: Now, the medium in the dish should be a total of 3 mL.
- 9.72 h after cell release, cells may reach confluence. Trypsinize the cells off the 35 mm dish and culture those cells in a 60 mm dish.
- 10.Add puromycin to the dish at a final concentration of 4 μ g/mL. Tip: To assess the efficacy of puromycin selection, culture a dish of wild-type HT-1080 cells as a negative control.
- 11.Allow puromycin selection for 48 h. Almost all wild-type HT-1080 cells should die, while the dish infected with lentiviruses should have some remaining cells.
- 12.Replace the medium with regular growth medium without puromycin and allow the cells to grow to confluence before harvesting or staining.

Cells were lysed with IntactProteinTM cell/tissue lysis kit (Cat#415) and stored in -20°C.


Note: This product is for research use only.

Validation Data

Genotype	Ct Value
Wild-Type	22.96
Knock-Down	25.10 g
∆Ct (CtKD-CtWT)	2.14
% mRNA	ZZO/
Reduction	77% [§]

RT-qPCR analysis. HT-1080 cells were infected with GLI3-specific shRNA lentiviral particles, total RNA was extracted from wild-type and knockdown cells, RT-qPCR was performed using gene-specific primers. Δ Ct (CtKD-CtWT) was used to calculate mRNA reduction (%) between wild-type and knockdown cells using the following formula: $(1-1/2\Delta$ Ct) x 100%.

Western blotting analysis. GLI3 protein expression in wild-type (WT) and shRNA knockdown (KD) HT-1080 cells was detected using Western blotting. Hsp90 α served as a loading control. The blots were incubated with primary antibodies against GLI3 and Hsp90 α , respectively, followed by incubating with HRP-conjugated goat anti-rabbit secondary antibody. Images were developed using FeQTM ECL Substrate Kit.